MATH 124B: COMPUTATIONAL FINAL

No calculator or notes.
(1) Compute the Fourier coefficients of $x^{3}+x$ on $[-1,1]$.
(2) Compute the Neumann eigenvalues and eigenfunctions of the one-dimensional problem

$$
\begin{cases}y^{\prime \prime}+\lambda y=0 & \text { on }[0, L] \\ y^{\prime}(0)=y^{\prime}(L)=0\end{cases}
$$

(3) Compute the Green's function for the 3 dimensional half plane $\{(x, y, z) \mid z>0\}$. Note that the fundamental solution in 3 dimensions is $-\frac{1}{4 \pi\left\|\mathbf{x}-\mathbf{x}_{0}\right\|}$. Then use this to compute the solution for the Dirichlet problem in the upper half space with boundary condition $u(x, 0)=h(x)$.
(4) Consider the Laplace eigenvalue problem with Dirichlet boundary conditions on the square $(0, \pi) \times(0, \pi)$. Compute the Rayleigh quotient with the trial function $x y(\pi-x)(\pi-y)$. Then repeat with the trial function $w=\sin (x) \sin (y)$.
(5) Find the harmonic function u in the semidisk $\{r<1,0<\theta<\pi\}$ with u vanishing on $\theta=0, \pi$ and $\frac{\partial u}{\partial r}=\sin \theta+\pi \sin (2 \theta)$ on $r=1$.

1. Solutions

(1) Since the function is odd, the cosine terms vanish. Calculating the sine terms one by one, we have

$$
\begin{aligned}
\int_{-1}^{1} x \sin (n \pi x) d x & =-\left.2 \frac{x}{n \pi} \cos (n \pi x)\right|_{0} ^{1}+\frac{2}{n \pi} \int_{0}^{1} \cos (n \pi x) d x \\
& =(-1)^{n+1} \frac{2}{n \pi}
\end{aligned}
$$

for $n=1,2, \ldots$, and

$$
\begin{aligned}
\int_{-1}^{1} x^{3} \sin (n \pi x) d x & =2 \int_{0}^{1} x^{3} \sin (n \pi x) d x \\
& =-\left.2 \frac{x^{3}}{n \pi} \cos (n \pi x)\right|_{0} ^{1}+\frac{6}{n \pi} \int_{0}^{1} x^{2} \cos (n \pi x) d x \\
& =(-1)^{n+1} \frac{2}{n \pi}-\frac{12}{n^{2} \pi^{2}} \int_{0}^{1} x \sin (n \pi x) d x \\
& =(-1)^{n+1} \frac{2}{n \pi}+(-1)^{n} \frac{12}{n^{3} \pi^{3}}
\end{aligned}
$$

hence, combining we have

$$
\begin{aligned}
A_{n} & =0 \\
B_{n} & =(-1)^{n+1} \frac{4}{n \pi}+(-1)^{n} \frac{12}{n^{3} \pi^{3}}
\end{aligned}
$$

(2) Using the symmetric boundary conditions, we know that $\lambda \geq 0$, so that the solution to the constant coefficient second order equation is given by

$$
y(x)=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x)
$$

To incorporate the Neumann boundary condition, we have

$$
y^{\prime}(x)=-c_{1} \sqrt{\lambda} \sin (\sqrt{\lambda} x)+c_{2} \sqrt{\lambda} \cos (\sqrt{\lambda} x)
$$

so that $y^{\prime}(0)=0=c_{2} \sqrt{\lambda}$. If $\lambda=0$, then we have the constant solution $y=c($ for $c \neq 0)$ and if $\lambda \neq 0$, then $c_{2}=0$ so that

$$
y^{\prime}(L)=0=-c_{1} \sqrt{\lambda} \sin (\sqrt{\lambda} L)
$$

If $c_{1}=0$, then we have the trivial solution which we exclude, so that $\lambda=\left(\frac{n \pi}{L}\right)^{2}$, for $n \in \mathbb{N}$. Hence the eigenvalues are given by $\lambda=\left(\frac{n \pi}{L}\right)^{2}$, for $n=0,1,2, \ldots$, note that we include $\lambda=0$, with corresponding eigenfunctions $y_{n}(x)=\cos \left(\sqrt{\lambda_{n}} x\right)$.
(3) We use the reflection principle to find a candidate Green's function and check that it satisfies the 3 properties. Define the reflection across the $z=0$ plane by

$$
\mathbf{x}^{*}=(x, y, z)^{*}=(x, y,-z) .
$$

Our candidate Green's function is

$$
G\left(\mathbf{x}, \mathbf{x}_{0}\right)=-\frac{1}{4 \pi\left\|\mathbf{x}-\mathbf{x}_{0}\right\|}+\frac{1}{4 \pi\left\|\mathrm{x}-\mathbf{x}_{0}^{*}\right\|}
$$

Since $1 / r$ is a fundamental solution in 3 dimensions, G is harmonic when $\mathbf{x} \neq \mathbf{x}_{0}$ and $G+\frac{1}{4 \pi\left\|\mathbf{x}-\mathbf{x}_{0}\right\|}$ is harmonic in the upper half space. When $\mathbf{x} \in\{z=0\}$, we have $\left\|\mathbf{x}-\mathbf{x}_{0}\right\|=$ $\left\|\mathbf{x}-\mathbf{x}_{0}^{*}\right\|$, so $G=0$ on the boundary $\{z=0\}$.
To compute the solution to the Dirichlet problem, we need to compute the normal derivative of G. We have

$$
\nabla G\left(\mathbf{x}, \mathbf{x}_{0}\right)=\frac{\nabla\left(\left\|\mathbf{x}-\mathbf{x}_{0}\right\|\right)}{4 \pi\left\|\mathbf{x}-\mathbf{x}_{0}\right\|^{2}}-\frac{\nabla\left(\left\|\mathbf{x}-\mathbf{x}_{0}^{*}\right\|\right)}{4 \pi\left\|\mathbf{x}-\mathbf{x}_{0}^{*}\right\|^{2}}
$$

and

$$
\begin{aligned}
\nabla\left(\left\|\mathrm{x}-\mathrm{x}_{0}\right\|\right) & =\frac{\mathrm{x}-\mathrm{x}_{0}}{\left\|\mathrm{x}-\mathrm{x}_{0}\right\|} \\
\nabla\left(\left\|\mathrm{x}-\mathrm{x}_{0}^{*}\right\|\right) & =\frac{\mathrm{x}-\mathrm{x}_{0}}{\left\|\mathrm{x}-\mathrm{x}_{0}\right\|}
\end{aligned}
$$

On the boundary, the unit outer normal is given by $\langle 0,0,-1\rangle$, so

$$
\begin{aligned}
\frac{\partial G}{\partial n}=\nabla G\left(\mathbf{x}, \mathbf{x}_{0}\right) \cdot\langle 0,0,-1\rangle & =\frac{z_{0}-z}{4 \pi\left\|\mathbf{x}-\mathbf{x}_{0}\right\|^{3}}+\frac{z+z_{0}}{\left\|\mathbf{x}-\mathbf{x}_{0}^{*}\right\|^{3}} \\
& =\frac{z_{0}}{2 \pi\left(\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+z_{0}^{2}\right)^{3 / 2}}
\end{aligned}
$$

hence the solution to the Dirichlet problem is given by

$$
u\left(x_{0}, y_{0}, z_{0}\right)=\frac{z_{0}}{2 \pi} \iint_{z=0} \frac{h(x, y)}{\left(\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+z_{0}^{2}\right)^{3 / 2}} d S
$$

(4) Let $w(x, y)=x y(\pi-x)(\pi-y)$. The gradient is

$$
\begin{aligned}
\nabla(w) & =\langle y(\pi-y)(\pi-2 x), x(\pi-x)(\pi-2 y)\rangle \\
|\nabla w|^{2} & =y^{2}(\pi-y)^{2}(\pi-2 x)^{2}+x^{2}(\pi-x)^{2}(\pi-2 y)^{2}
\end{aligned}
$$

and the L^{2} norm is

$$
\begin{aligned}
\|\nabla w\|^{2} & =\int_{0}^{\pi} \int_{0}^{\pi}|\nabla w|^{2} d x d y \\
& =\int_{0}^{\pi} \int_{0}^{\pi} y^{2}(\pi-y)^{2}(\pi-2 x)^{2}+x^{2}(\pi-x)^{2}(\pi-2 y)^{2} d x d y \\
& =2 \int_{0}^{\pi} y^{2}(\pi-y)^{2} d y \int_{0}^{\pi}(\pi-2 x)^{2} d x \\
& =\frac{\pi^{8}}{45}
\end{aligned}
$$

and

$$
\begin{aligned}
\|w\|^{2} & =\int_{0}^{\pi} \int_{0}^{\pi} x^{2} y^{2}(\pi-x)^{2}(\pi-y)^{2} d x d y \\
& =\frac{\pi^{10}}{900}
\end{aligned}
$$

hence the Rayleigh quotient is given by

$$
\frac{\|\nabla w\|^{2}}{\|w\|^{2}}=\frac{20}{\pi^{2}}=2.03
$$

For the test function $w=\sin (x) \sin (y)$, we compute

$$
\begin{aligned}
\nabla w & =\langle\cos (x) \sin (y), \sin (x) \cos (y)\rangle \\
|\nabla w|^{2} & =\cos ^{2}(x) \sin ^{2}(y)+\sin ^{2}(x) \cos ^{2}(y) \\
\|\nabla w\|^{2} & =\int_{0}^{\pi} \int_{0}^{\pi} \cos ^{2}(x) \sin ^{2}(y)+\sin ^{2}(x) \cos ^{2}(y) d x d y \\
& =\frac{\pi^{2}}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\|w\|^{2} & =\int_{0}^{\pi} \int_{0}^{\pi} \sin ^{2}(x) \sin ^{2}(y) d x d y \\
& =\frac{\pi^{2}}{4}
\end{aligned}
$$

hence

$$
\frac{\|\nabla w\|^{2}}{\|w\|^{2}}=2
$$

which is to be expected since we computed the Rayleigh quotient of the first eigenfunction.
(5) The domain is a semidisk (wedge-type), hence the solution is given by

$$
u(r, \theta)=\sum_{n=1}^{\infty} A_{n} r^{n} \sin (n \theta)
$$

where

$$
A_{n}=\frac{2}{n \pi} \int_{0}^{\pi}(\sin \theta+\pi \sin (2 \theta)) \sin (n \theta) d \theta
$$

For $n=1$, we have

$$
\begin{aligned}
A_{1} & =\frac{2}{\pi} \int_{0}^{\pi} \sin ^{2}(\theta) d \theta+\frac{2}{\pi} \int_{0}^{\pi} \sin (2 \theta) \sin (\theta) d \theta \\
& =1
\end{aligned}
$$

and for $n=2$,

$$
A_{2}=\int_{0}^{\pi} \sin ^{2}(2 \theta) d e \theta=\frac{\pi}{2}
$$

and for $n>2, m=1,2$

$$
\int_{0}^{\pi} \sin (m \theta) \sin (n \theta) d \theta=0
$$

hence

$$
u(r, \theta)=r \sin (\theta)+\frac{\pi}{2} r^{2} \sin (2 \theta) .
$$

